xlsx
    Overview
    Documentation
    Insights
    Code
    Contributors
    Dependencies
    Alternatives

xlsx

SheetJS Spreadsheet data parser and writer

0.15.1  •  Published 2 months ago  •  by SheetJS  •  Apache License 2.0

SheetJS js-xlsx

Parser and writer for various spreadsheet formats. Pure-JS cleanroom implementation from official specifications, related documents, and test files. Emphasis on parsing and writing robustness, cross-format feature compatibility with a unified JS representation, and ES3/ES5 browser compatibility back to IE6.

This is the community version. We also offer a pro version with performance enhancements, additional features like styling, and dedicated support.

Pro Version

Commercial Support

Rendered Documentation

In-Browser Demos

Source Code

Issues and Bug Reports

File format support for known spreadsheet data formats:

Graph of supported formats (click to show)

circo graph of format support

graph legend

Browser Test

Build Status

Build Status Build Status Coverage Status Dependencies Status npm Downloads Analytics

Table of Contents

Expand to show Table of Contents

Installation

In the browser, just add a script tag:

<script lang="javascript" src="dist/xlsx.full.min.js"></script>
CDN Availability (click to show)
CDN URL
unpkg https://unpkg.com/xlsx/
jsDelivr https://jsdelivr.com/package/npm/xlsx
CDNjs http://cdnjs.com/libraries/xlsx
packd https://bundle.run/xlsx@latest?name=XLSX

unpkg makes the latest version available at:

<script src="https://unpkg.com/xlsx/dist/xlsx.full.min.js"></script>

With npm:

$ npm install xlsx

With bower:

$ bower install js-xlsx

JS Ecosystem Demos

The demos directory includes sample projects for:

Frameworks and APIs

Bundlers and Tooling

Platforms and Integrations

Optional Modules

Optional features (click to show)

The node version automatically requires modules for additional features. Some of these modules are rather large in size and are only needed in special circumstances, so they do not ship with the core. For browser use, they must be included directly:

<!-- international support from js-codepage -->
<script src="dist/cpexcel.js"></script>

An appropriate version for each dependency is included in the dist/ directory.

The complete single-file version is generated at dist/xlsx.full.min.js

A slimmer build with XLSX / HTML support is generated at dist/xlsx.mini.min.js

Webpack and Browserify builds include optional modules by default. Webpack can be configured to remove support with resolve.alias:

  /* uncomment the lines below to remove support */
  resolve: {
    alias: { "./dist/cpexcel.js": "" } // <-- omit international support
  }

ECMAScript 5 Compatibility

Since the library uses functions like Array#forEach, older browsers require shims to provide missing functions.

To use the shim, add the shim before the script tag that loads xlsx.js:

<!-- add the shim first -->
<script type="text/javascript" src="shim.min.js"></script>
<!-- after the shim is referenced, add the library -->
<script type="text/javascript" src="xlsx.full.min.js"></script>

The script also includes IE_LoadFile and IE_SaveFile for loading and saving files in Internet Explorer versions 6-9. The xlsx.extendscript.js script bundles the shim in a format suitable for Photoshop and other Adobe products.

Philosophy

Philosophy (click to show)

Prior to SheetJS, APIs for processing spreadsheet files were format-specific. Third-party libraries either supported one format, or they involved a separate set of classes for each supported file type. Even though XLSB was introduced in Excel 2007, nothing outside of SheetJS or Excel supported the format.

To promote a format-agnostic view, js-xlsx starts from a pure-JS representation that we call the “Common Spreadsheet Format”. Emphasizing a uniform object representation enables new features like format conversion (reading an XLSX template and saving as XLS) and circumvents the “class trap”. By abstracting the complexities of the various formats, tools need not worry about the specific file type!

A simple object representation combined with careful coding practices enables use cases in older browsers and in alternative environments like ExtendScript and Web Workers. It is always tempting to use the latest and greatest features, but they tend to require the latest versions of browsers, limiting usability.

Utility functions capture common use cases like generating JS objects or HTML. Most simple operations should only require a few lines of code. More complex operations generally should be straightforward to implement.

Excel pushes the XLSX format as default starting in Excel 2007. However, there are other formats with more appealing properties. For example, the XLSB format is spiritually similar to XLSX but files often tend up taking less than half the space and open much faster! Even though an XLSX writer is available, other format writers are available so users can take advantage of the unique characteristics of each format.

The primary focus of the Community Edition is correct data interchange, focused on extracting data from any compatible data representation and exporting data in various formats suitable for any third party interface.

Parsing Workbooks

For parsing, the first step is to read the file. This involves acquiring the data and feeding it into the library. Here are a few common scenarios:

nodejs read a file (click to show)

readFile is only available in server environments. Browsers have no API for reading arbitrary files given a path, so another strategy must be used.

if(typeof require !== 'undefined') XLSX = require('xlsx');
var workbook = XLSX.readFile('test.xlsx');
/* DO SOMETHING WITH workbook HERE */
Photoshop ExtendScript read a file (click to show)

readFile wraps the File logic in Photoshop and other ExtendScript targets. The specified path should be an absolute path:

#include "xlsx.extendscript.js"
/* Read test.xlsx from the Documents folder */
var workbook = XLSX.readFile(Folder.myDocuments + '/' + 'test.xlsx');
/* DO SOMETHING WITH workbook HERE */

The extendscript demo includes a more complex example.

Browser read TABLE element from page (click to show)

The table_to_book and table_to_sheet utility functions take a DOM TABLE element and iterate through the child nodes.

var workbook = XLSX.utils.table_to_book(document.getElementById('tableau'));
/* DO SOMETHING WITH workbook HERE */

Multiple tables on a web page can be converted to individual worksheets:

/* create new workbook */
var workbook = XLSX.utils.book_new();

/* convert table 'table1' to worksheet named "Sheet1" */
var ws1 = XLSX.utils.table_to_sheet(document.getElementById('table1'));
XLSX.utils.book_append_sheet(workbook, ws1, "Sheet1");

/* convert table 'table2' to worksheet named "Sheet2" */
var ws2 = XLSX.utils.table_to_sheet(document.getElementById('table2'));
XLSX.utils.book_append_sheet(workbook, ws2, "Sheet2");

/* workbook now has 2 worksheets */

Alternatively, the HTML code can be extracted and parsed:

var htmlstr = document.getElementById('tableau').outerHTML;
var workbook = XLSX.read(htmlstr, {type:'string'});
Browser download file (ajax) (click to show)

Note: for a more complete example that works in older browsers, check the demo at http://oss.sheetjs.com/js-xlsx/ajax.html. The xhr demo includes more examples with XMLHttpRequest and fetch.

var url = "http://oss.sheetjs.com/test_files/formula_stress_test.xlsx";

/* set up async GET request */
var req = new XMLHttpRequest();
req.open("GET", url, true);
req.responseType = "arraybuffer";

req.onload = function(e) {
  var data = new Uint8Array(req.response);
  var workbook = XLSX.read(data, {type:"array"});

  /* DO SOMETHING WITH workbook HERE */
}

req.send();
Browser drag-and-drop (click to show)

Drag-and-drop uses the HTML5 FileReader API.

function handleDrop(e) {
  e.stopPropagation(); e.preventDefault();
  var files = e.dataTransfer.files, f = files[0];
  var reader = new FileReader();
  reader.onload = function(e) {
    var data = new Uint8Array(e.target.result);
    var workbook = XLSX.read(data, {type: 'array'});

    /* DO SOMETHING WITH workbook HERE */
  };
  reader.readAsArrayBuffer(f);
}
drop_dom_element.addEventListener('drop', handleDrop, false);
Browser file upload form element (click to show)

Data from file input elements can be processed using the same FileReader API as in the drag-and-drop example:

function handleFile(e) {
  var files = e.target.files, f = files[0];
  var reader = new FileReader();
  reader.onload = function(e) {
    var data = new Uint8Array(e.target.result);
    var workbook = XLSX.read(data, {type: 'array'});

    /* DO SOMETHING WITH workbook HERE */
  };
  reader.readAsArrayBuffer(f);
}
input_dom_element.addEventListener('change', handleFile, false);

The oldie demo shows an IE-compatible fallback scenario.

More specialized cases, including mobile app file processing, are covered in the included demos

Parsing Examples

Note that older versions of IE do not support HTML5 File API, so the Base64 mode is used for testing.

Get Base64 encoding on OSX / Windows (click to show)

On OSX you can get the Base64 encoding with:

$ <target_file base64 | pbcopy

On Windows XP and up you can get the Base64 encoding using certutil:

> certutil -encode target_file target_file.b64

(note: You have to open the file and remove the header and footer lines)

Streaming Read

Why is there no Streaming Read API? (click to show)

The most common and interesting formats (XLS, XLSX/M, XLSB, ODS) are ultimately ZIP or CFB containers of files. Neither format puts the directory structure at the beginning of the file: ZIP files place the Central Directory records at the end of the logical file, while CFB files can place the storage info anywhere in the file! As a result, to properly handle these formats, a streaming function would have to buffer the entire file before commencing. That belies the expectations of streaming, so we do not provide any streaming read API.

When dealing with Readable Streams, the easiest approach is to buffer the stream and process the whole thing at the end. This can be done with a temporary file or by explicitly concatenating the stream:

Explicitly concatenating streams (click to show)
var fs = require('fs');
var XLSX = require('xlsx');
function process_RS(stream/*:ReadStream*/, cb/*:(wb:Workbook)=>void*/)/*:void*/{
  var buffers = [];
  stream.on('data', function(data) { buffers.push(data); });
  stream.on('end', function() {
    var buffer = Buffer.concat(buffers);
    var workbook = XLSX.read(buffer, {type:"buffer"});

    /* DO SOMETHING WITH workbook IN THE CALLBACK */
    cb(workbook);
  });
}

More robust solutions are available using modules like concat-stream.

Writing to filesystem first (click to show)

This example uses tempfile to generate file names:

var fs = require('fs'), tempfile = require('tempfile');
var XLSX = require('xlsx');
function process_RS(stream/*:ReadStream*/, cb/*:(wb:Workbook)=>void*/)/*:void*/{
  var fname = tempfile('.sheetjs');
  console.log(fname);
  var ostream = fs.createWriteStream(fname);
  stream.pipe(ostream);
  ostream.on('finish', function() {
    var workbook = XLSX.readFile(fname);
    fs.unlinkSync(fname);

    /* DO SOMETHING WITH workbook IN THE CALLBACK */
    cb(workbook);
  });
}

Working with the Workbook

The full object format is described later in this README.

Reading a specific cell (click to show)

This example extracts the value stored in cell A1 from the first worksheet:

var first_sheet_name = workbook.SheetNames[0];
var address_of_cell = 'A1';

/* Get worksheet */
var worksheet = workbook.Sheets[first_sheet_name];

/* Find desired cell */
var desired_cell = worksheet[address_of_cell];

/* Get the value */
var desired_value = (desired_cell ? desired_cell.v : undefined);
Adding a new worksheet to a workbook (click to show)

This example uses XLSX.utils.aoa_to_sheet to make a sheet and XLSX.utils.book_append_sheet to append the sheet to the workbook:

var ws_name = "SheetJS";

/* make worksheet */
var ws_data = [
  [ "S", "h", "e", "e", "t", "J", "S" ],
  [  1 ,  2 ,  3 ,  4 ,  5 ]
];
var ws = XLSX.utils.aoa_to_sheet(ws_data);

/* Add the worksheet to the workbook */
XLSX.utils.book_append_sheet(wb, ws, ws_name);
Creating a new workbook from scratch (click to show)

The workbook object contains a SheetNames array of names and a Sheets object mapping sheet names to sheet objects. The XLSX.utils.book_new utility function creates a new workbook object:

/* create a new blank workbook */
var wb = XLSX.utils.book_new();

The new workbook is blank and contains no worksheets. The write functions will error if the workbook is empty.

Parsing and Writing Examples

The node version installs a command line tool xlsx which can read spreadsheet files and output the contents in various formats. The source is available at xlsx.njs in the bin directory.

Some helper functions in XLSX.utils generate different views of the sheets:

  • XLSX.utils.sheet_to_csv generates CSV
  • XLSX.utils.sheet_to_txt generates UTF16 Formatted Text
  • XLSX.utils.sheet_to_html generates HTML
  • XLSX.utils.sheet_to_json generates an array of objects
  • XLSX.utils.sheet_to_formulae generates a list of formulae

Writing Workbooks

For writing, the first step is to generate output data. The helper functions write and writeFile will produce the data in various formats suitable for dissemination. The second step is to actual share the data with the end point. Assuming workbook is a workbook object:

nodejs write a file (click to show)

XLSX.writeFile uses fs.writeFileSync in server environments:

if(typeof require !== 'undefined') XLSX = require('xlsx');
/* output format determined by filename */
XLSX.writeFile(workbook, 'out.xlsb');
/* at this point, out.xlsb is a file that you can distribute */
Photoshop ExtendScript write a file (click to show)

writeFile wraps the File logic in Photoshop and other ExtendScript targets. The specified path should be an absolute path:

#include "xlsx.extendscript.js"
/* output format determined by filename */
XLSX.writeFile(workbook, 'out.xlsx');
/* at this point, out.xlsx is a file that you can distribute */

The extendscript demo includes a more complex example.

Browser add TABLE element to page (click to show)

The sheet_to_html utility function generates HTML code that can be added to any DOM element.

var worksheet = workbook.Sheets[workbook.SheetNames[0]];
var container = document.getElementById('tableau');
container.innerHTML = XLSX.utils.sheet_to_html(worksheet);
Browser upload file (ajax) (click to show)

A complete example using XHR is included in the XHR demo, along with examples for fetch and wrapper libraries. This example assumes the server can handle Base64-encoded files (see the demo for a basic nodejs server):

/* in this example, send a base64 string to the server */
var wopts = { bookType:'xlsx', bookSST:false, type:'base64' };

var wbout = XLSX.write(workbook,wopts);

var req = new XMLHttpRequest();
req.open("POST", "/upload", true);
var formdata = new FormData();
formdata.append('file', 'test.xlsx'); // <-- server expects `file` to hold name
formdata.append('data', wbout); // <-- `data` holds the base64-encoded data
req.send(formdata);
Browser save file (click to show)

XLSX.writeFile wraps a few techniques for triggering a file save:

  • URL browser API creates an object URL for the file, which the library uses by creating a link and forcing a click. It is supported in modern browsers.
  • msSaveBlob is an IE10+ API for triggering a file save.
  • IE_FileSave uses VBScript and ActiveX to write a file in IE6+ for Windows XP and Windows 7. The shim must be included in the containing HTML page.

There is no standard way to determine if the actual file has been downloaded.

/* output format determined by filename */
XLSX.writeFile(workbook, 'out.xlsb');
/* at this point, out.xlsb will have been downloaded */
Browser save file (compatibility) (click to show)

XLSX.writeFile techniques work for most modern browsers as well as older IE. For much older browsers, there are workarounds implemented by wrapper libraries.

FileSaver.js implements saveAs. Note: XLSX.writeFile will automatically call saveAs if available.

/* bookType can be any supported output type */
var wopts = { bookType:'xlsx', bookSST:false, type:'array' };

var wbout = XLSX.write(workbook,wopts);

/* the saveAs call downloads a file on the local machine */
saveAs(new Blob([wbout],{type:"application/octet-stream"}), "test.xlsx");

Downloadify uses a Flash SWF button to generate local files, suitable for environments where ActiveX is unavailable:

Downloadify.create(id,{
	/* other options are required! read the downloadify docs for more info */
	filename: "test.xlsx",
	data: function() { return XLSX.write(wb, {bookType:"xlsx", type:'base64'}); },
	append: false,
	dataType: 'base64'
});

The oldie demo shows an IE-compatible fallback scenario.

The included demos cover mobile apps and other special deployments.

Writing Examples

Streaming Write

The streaming write functions are available in the XLSX.stream object. They take the same arguments as the normal write functions but return a Readable Stream. They are only exposed in NodeJS.

  • XLSX.stream.to_csv is the streaming version of XLSX.utils.sheet_to_csv.
  • XLSX.stream.to_html is the streaming version of XLSX.utils.sheet_to_html.
  • XLSX.stream.to_json is the streaming version of XLSX.utils.sheet_to_json.
nodejs convert to CSV and write file (click to show)
var output_file_name = "out.csv";
var stream = XLSX.stream.to_csv(worksheet);
stream.pipe(fs.createWriteStream(output_file_name));
nodejs write JSON stream to screen (click to show)
/* to_json returns an object-mode stream */
var stream = XLSX.stream.to_json(worksheet, {raw:true});

/* the following stream converts JS objects to text via JSON.stringify */
var conv = new Transform({writableObjectMode:true});
conv._transform = function(obj, e, cb){ cb(null, JSON.stringify(obj) + "\n"); };

stream.pipe(conv); conv.pipe(process.stdout);

https://github.com/sheetjs/sheetaki pipes write streams to nodejs response.

Interface

XLSX is the exposed variable in the browser and the exported node variable

XLSX.version is the version of the library (added by the build script).

XLSX.SSF is an embedded version of the format library.

Parsing functions

XLSX.read(data, read_opts) attempts to parse data.

XLSX.readFile(filename, read_opts) attempts to read filename and parse.

Parse options are described in the Parsing Options section.

Writing functions

XLSX.write(wb, write_opts) attempts to write the workbook wb

XLSX.writeFile(wb, filename, write_opts) attempts to write wb to filename. In browser-based environments, it will attempt to force a client-side download.

XLSX.writeFileAsync(filename, wb, o, cb) attempts to write wb to filename. If o is omitted, the writer will use the third argument as the callback.

XLSX.stream contains a set of streaming write functions.

Write options are described in the Writing Options section.

Utilities

Utilities are available in the XLSX.utils object and are described in the Utility Functions section:

Importing:

  • aoa_to_sheet converts an array of arrays of JS data to a worksheet.
  • json_to_sheet converts an array of JS objects to a worksheet.
  • table_to_sheet converts a DOM TABLE element to a worksheet.
  • sheet_add_aoa adds an array of arrays of JS data to an existing worksheet.
  • sheet_add_json adds an array of JS objects to an existing worksheet.

Exporting:

  • sheet_to_json converts a worksheet object to an array of JSON objects.
  • sheet_to_csv generates delimiter-separated-values output.
  • sheet_to_txt generates UTF16 formatted text.
  • sheet_to_html generates HTML output.
  • sheet_to_formulae generates a list of the formulae (with value fallbacks).

Cell and cell address manipulation:

  • format_cell generates the text value for a cell (using number formats).
  • encode_row / decode_row converts between 0-indexed rows and 1-indexed rows.
  • encode_col / decode_col converts between 0-indexed columns and column names.
  • encode_cell / decode_cell converts cell addresses.
  • encode_range / decode_range converts cell ranges.

Common Spreadsheet Format

js-xlsx conforms to the Common Spreadsheet Format (CSF):

General Structures

Cell address objects are stored as {c:C, r:R} where C and R are 0-indexed column and row numbers, respectively. For example, the cell address B5 is represented by the object {c:1, r:4}.

Cell range objects are stored as {s:S, e:E} where S is the first cell and E is the last cell in the range. The ranges are inclusive. For example, the range A3:B7 is represented by the object {s:{c:0, r:2}, e:{c:1, r:6}}. Utility functions perform a row-major order walk traversal of a sheet range:

for(var R = range.s.r; R <= range.e.r; ++R) {
  for(var C = range.s.c; C <= range.e.c; ++C) {
    var cell_address = {c:C, r:R};
    /* if an A1-style address is needed, encode the address */
    var cell_ref = XLSX.utils.encode_cell(cell_address);
  }
}

Cell Object

Cell objects are plain JS objects with keys and values following the convention:

Key Description
v raw value (see Data Types section for more info)
w formatted text (if applicable)
t type: b Boolean, e Error, n Number, d Date, s Text, z Stub
f cell formula encoded as an A1-style string (if applicable)
F range of enclosing array if formula is array formula (if applicable)
r rich text encoding (if applicable)
h HTML rendering of the rich text (if applicable)
c comments associated with the cell
z number format string associated with the cell (if requested)
l cell hyperlink object (.Target holds link, .Tooltip is tooltip)
s the style/theme of the cell (if applicable)

Built-in export utilities (such as the CSV exporter) will use the w text if it is available. To change a value, be sure to delete cell.w (or set it to undefined) before attempting to export. The utilities will regenerate the w text from the number format (cell.z) and the raw value if possible.

The actual array formula is stored in the f field of the first cell in the array range. Other cells in the range will omit the f field.

Data Types

The raw value is stored in the v value property, interpreted based on the t type property. This separation allows for representation of numbers as well as numeric text. There are 6 valid cell types:

Type Description
b Boolean: value interpreted as JS boolean
e Error: value is a numeric code and w property stores common name **
n Number: value is a JS number **
d Date: value is a JS Date object or string to be parsed as Date **
s Text: value interpreted as JS string and written as text **
z Stub: blank stub cell that is ignored by data processing utilities **
Error values and interpretation (click to show)
Value Error Meaning
0x00 #NULL!
0x07 #DIV/0!
0x0F #VALUE!
0x17 #REF!
0x1D #NAME?
0x24 #NUM!
0x2A #N/A
0x2B #GETTING_DATA

Type n is the Number type. This includes all forms of data that Excel stores as numbers, such as dates/times and Boolean fields. Excel exclusively uses data that can be fit in an IEEE754 floating point number, just like JS Number, so the v field holds the raw number. The w field holds formatted text. Dates are stored as numbers by default and converted with XLSX.SSF.parse_date_code.

Type d is the Date type, generated only when the option cellDates is passed. Since JSON does not have a natural Date type, parsers are generally expected to store ISO 8601 Date strings like you would get from date.toISOString(). On the other hand, writers and exporters should be able to handle date strings and JS Date objects. Note that Excel disregards timezone modifiers and treats all dates in the local timezone. The library does not correct for this error.

Type s is the String type. Values are explicitly stored as text. Excel will interpret these cells as “number stored as text”. Generated Excel files automatically suppress that class of error, but other formats may elicit errors.

Type z represents blank stub cells. They are generated in cases where cells have no assigned value but hold comments or other metadata. They are ignored by the core library data processing utility functions. By default these cells are not generated; the parser sheetStubs option must be set to true.

Dates

Excel Date Code details (click to show)

By default, Excel stores dates as numbers with a format code that specifies date processing. For example, the date 19-Feb-17 is stored as the number 42785 with a number format of d-mmm-yy. The SSF module understands number formats and performs the appropriate conversion.

XLSX also supports a special date type d where the data is an ISO 8601 date string. The formatter converts the date back to a number.

The default behavior for all parsers is to generate number cells. Setting cellDates to true will force the generators to store dates.

Time Zones and Dates (click to show)

Excel has no native concept of universal time. All times are specified in the local time zone. Excel limitations prevent specifying true absolute dates.

Following Excel, this library treats all dates as relative to local time zone.

Epochs: 1900 and 1904 (click to show)

Excel supports two epochs (January 1 1900 and January 1 1904), see “1900 vs. 1904 Date System” article. The workbook’s epoch can be determined by examining the workbook’s wb.Workbook.WBProps.date1904 property:

!!(((wb.Workbook||{}).WBProps||{}).date1904)

Sheet Objects

Each key that does not start with ! maps to a cell (using A-1 notation)

sheet[address] returns the cell object for the specified address.

Special sheet keys (accessible as sheet[key], each starting with !):

  • sheet['!ref']: A-1 based range representing the sheet range. Functions that work with sheets should use this parameter to determine the range. Cells that are assigned outside of the range are not processed. In particular, when writing a sheet by hand, cells outside of the range are not included

    Functions that handle sheets should test for the presence of !ref field. If the !ref is omitted or is not a valid range, functions are free to treat the sheet as empty or attempt to guess the range. The standard utilities that ship with this library treat sheets as empty (for example, the CSV output is empty string).

    When reading a worksheet with the sheetRows property set, the ref parameter will use the restricted range. The original range is set at ws['!fullref']

  • sheet['!margins']: Object representing the page margins. The default values follow Excel’s “normal” preset. Excel also has a “wide” and a “narrow” preset but they are stored as raw measurements. The main properties are listed below:

Page margin details (click to show)
key description “normal” “wide” “narrow”
left left margin (inches) 0.7 1.0 0.25
right right margin (inches) 0.7 1.0 0.25
top top margin (inches) 0.75 1.0 0.75
bottom bottom margin (inches) 0.75 1.0 0.75
header header margin (inches) 0.3 0.5 0.3
footer footer margin (inches) 0.3 0.5 0.3
/* Set worksheet sheet to "normal" */
ws["!margins"]={left:0.7, right:0.7, top:0.75,bottom:0.75,header:0.3,footer:0.3}
/* Set worksheet sheet to "wide" */
ws["!margins"]={left:1.0, right:1.0, top:1.0, bottom:1.0, header:0.5,footer:0.5}
/* Set worksheet sheet to "narrow" */
ws["!margins"]={left:0.25,right:0.25,top:0.75,bottom:0.75,header:0.3,footer:0.3}

Worksheet Object

In addition to the base sheet keys, worksheets also add:

  • ws['!cols']: array of column properties objects. Column widths are actually stored in files in a normalized manner, measured in terms of the “Maximum Digit Width” (the largest width of the rendered digits 0-9, in pixels). When parsed, the column objects store the pixel width in the wpx field, character width in the wch field, and the maximum digit width in the MDW field.

  • ws['!rows']: array of row properties objects as explained later in the docs. Each row object encodes properties including row height and visibility.

  • ws['!merges']: array of range objects corresponding to the merged cells in the worksheet. Plain text formats do not support merge cells. CSV export will write all cells in the merge range if they exist, so be sure that only the first cell (upper-left) in the range is set.

  • ws['!protect']: object of write sheet protection properties. The password key specifies the password for formats that support password-protected sheets (XLSX/XLSB/XLS). The writer uses the XOR obfuscation method. The following keys control the sheet protection – set to false to enable a feature when sheet is locked or set to true to disable a feature:

Worksheet Protection Details (click to show)
key feature (true=disabled / false=enabled) default
selectLockedCells Select locked cells enabled
selectUnlockedCells Select unlocked cells enabled
formatCells Format cells disabled
formatColumns Format columns disabled
formatRows Format rows disabled
insertColumns Insert columns disabled
insertRows Insert rows disabled
insertHyperlinks Insert hyperlinks disabled
deleteColumns Delete columns disabled
deleteRows Delete rows disabled
sort Sort disabled
autoFilter Filter disabled
pivotTables Use PivotTable reports disabled
objects Edit objects enabled
scenarios Edit scenarios enabled
  • ws['!autofilter']: AutoFilter object following the schema:
type AutoFilter = {
  ref:string; // A-1 based range representing the AutoFilter table range
}

Chartsheet Object

Chartsheets are represented as standard sheets. They are distinguished with the !type property set to "chart".

The underlying data and !ref refer to the cached data in the chartsheet. The first row of the chartsheet is the underlying header.

Macrosheet Object

Macrosheets are represented as standard sheets. They are distinguished with the !type property set to "macro".

Dialogsheet Object

Dialogsheets are represented as standard sheets. They are distinguished with the !type property set to "dialog".

Workbook Object

workbook.SheetNames is an ordered list of the sheets in the workbook

wb.Sheets[sheetname] returns an object representing the worksheet.

wb.Props is an object storing the standard properties. wb.Custprops stores custom properties. Since the XLS standard properties deviate from the XLSX standard, XLS parsing stores core properties in both places.

wb.Workbook stores workbook-level attributes.

Workbook File Properties

The various file formats use different internal names for file properties. The workbook Props object normalizes the names:

File Properties (click to show)
JS Name Excel Description
Title Summary tab “Title”
Subject Summary tab “Subject”
Author Summary tab “Author”
Manager Summary tab “Manager”
Company Summary tab “Company”
Category Summary tab “Category”
Keywords Summary tab “Keywords”
Comments Summary tab “Comments”
LastAuthor Statistics tab “Last saved by”
CreatedDate Statistics tab “Created”

For example, to set the workbook title property:

if(!wb.Props) wb.Props = {};
wb.Props.Title = "Insert Title Here";

Custom properties are added in the workbook Custprops object:

if(!wb.Custprops) wb.Custprops = {};
wb.Custprops["Custom Property"] = "Custom Value";

Writers will process the Props key of the options object:

/* force the Author to be "SheetJS" */
XLSX.write(wb, {Props:{Author:"SheetJS"}});

Workbook-Level Attributes

wb.Workbook stores workbook-level attributes.

Defined Names

wb.Workbook.Names is an array of defined name objects which have the keys:

Defined Name Properties (click to show)
Key Description
Sheet Name scope. Sheet Index (0 = first sheet) or null (Workbook)
Name Case-sensitive name. Standard rules apply **
Ref A1-style Reference ("Sheet1!$A$1:$D$20")
Comment Comment (only applicable for XLS/XLSX/XLSB)

Excel allows two sheet-scoped defined names to share the same name. However, a sheet-scoped name cannot collide with a workbook-scope name. Workbook writers may not enforce this constraint.

Workbook Views

wb.Workbook.Views is an array of workbook view objects which have the keys:

Key Description
RTL If true, display right-to-left

Miscellaneous Workbook Properties

wb.Workbook.WBProps holds other workbook properties:

Key Description
CodeName VBA Project Workbook Code Name
date1904 epoch: 0/false for 1900 system, 1/true for 1904
filterPrivacy Warn or strip personally identifying info on save

Document Features

Even for basic features like date storage, the official Excel formats store the same content in different ways. The parsers are expected to convert from the underlying file format representation to the Common Spreadsheet Format. Writers are expected to convert from CSF back to the underlying file format.

Formulae

The A1-style formula string is stored in the f field. Even though different file formats store the formulae in different ways, the formats are translated. Even though some formats store formulae with a leading equal sign, CSF formulae do not start with =.

Representation of A1=1, A2=2, A3=A1+A2 (click to show)
{
  "!ref": "A1:A3",
  A1: { t:'n', v:1 },
  A2: { t:'n', v:2 },
  A3: { t:'n', v:3, f:'A1+A2' }
}

Shared formulae are decompressed and each cell has the formula corresponding to its cell. Writers generally do not attempt to generate shared formulae.

Cells with formula entries but no value will be serialized in a way that Excel and other spreadsheet tools will recognize. This library will not automatically compute formula results! For example, to compute BESSELJ in a worksheet:

Formula without known value (click to show)
{
  "!ref": "A1:A3",
  A1: { t:'n', v:3.14159 },
  A2: { t:'n', v:2 },
  A3: { t:'n', f:'BESSELJ(A1,A2)' }
}

Array Formulae

Array formulae are stored in the top-left cell of the array block. All cells of an array formula have a F field corresponding to the range. A single-cell formula can be distinguished from a plain formula by the presence of F field.

Array Formula examples (click to show)

For example, setting the cell C1 to the array formula {=SUM(A1:A3*B1:B3)}:

worksheet['C1'] = { t:'n', f: "SUM(A1:A3*B1:B3)", F:"C1:C1" };

For a multi-cell array formula, every cell has the same array range but only the first cell specifies the formula. Consider D1:D3=A1:A3*B1:B3:

worksheet['D1'] = { t:'n', F:"D1:D3", f:"A1:A3*B1:B3" };
worksheet['D2'] = { t:'n', F:"D1:D3" };
worksheet['D3'] = { t:'n', F:"D1:D3" };

Utilities and writers are expected to check for the presence of a F field and ignore any possible formula element f in cells other than the starting cell. They are not expected to perform validation of the formulae!

Formula Output Utility Function (click to show)

The sheet_to_formulae method generates one line per formula or array formula. Array formulae are rendered in the form range=formula while plain cells are rendered in the form cell=formula or value. Note that string literals are prefixed with an apostrophe ', consistent with Excel’s formula bar display.

Formulae File Format Details (click to show)
Storage Representation Formats Read Write
A1-style strings XLSX ⭕️ ⭕️
RC-style strings XLML and plain text ⭕️ ⭕️
BIFF Parsed formulae XLSB and all XLS formats ⭕️
OpenFormula formulae ODS/FODS/UOS ⭕️ ⭕️

Since Excel prohibits named cells from colliding with names of A1 or RC style cell references, a (not-so-simple) regex conversion is possible. BIFF Parsed formulae have to be explicitly unwound. OpenFormula formulae can be converted with regular expressions.

Column Properties

The !cols array in each worksheet, if present, is a collection of ColInfo objects which have the following properties:

type ColInfo = {
  /* visibility */
  hidden?: boolean; // if true, the column is hidden

  /* column width is specified in one of the following ways: */
  wpx?:    number;  // width in screen pixels
  width?:  number;  // width in Excel's "Max Digit Width", width*256 is integral
  wch?:    number;  // width in characters

  /* other fields for preserving features from files */
  MDW?:    number;  // Excel's "Max Digit Width" unit, always integral
};
Why are there three width types? (click to show)

There are three different width types corresponding to the three different ways spreadsheets store column widths:

SYLK and other plain text formats use raw character count. Contemporaneous tools like Visicalc and Multiplan were character based. Since the characters had the same width, it sufficed to store a count. This tradition was continued into the BIFF formats.

SpreadsheetML (2003) tried to align with HTML by standardizing on screen pixel count throughout the file. Column widths, row heights, and other measures use pixels. When the pixel and character counts do not align, Excel rounds values.

XLSX internally stores column widths in a nebulous “Max Digit Width” form. The Max Digit Width is the width of the largest digit when rendered (generally the “0” character is the widest). The internal width must be an integer multiple of the the width divided by 256. ECMA-376 describes a formula for converting between pixels and the internal width. This represents a hybrid approach.

Read functions attempt to populate all three properties. Write functions will try to cycle specified values to the desired type. In order to avoid potential conflicts, manipulation should delete the other properties first. For example, when changing the pixel width, delete the wch and width properties.

Implementation details (click to show)

Given the constraints, it is possible to determine the MDW without actually inspecting the font! The parsers guess the pixel width by converting from width to pixels and back, repeating for all possible MDW and selecting the MDW that minimizes the error. XLML actually stores the pixel width, so the guess works in the opposite direction.

Even though all of the information is made available, writers are expected to follow the priority order:

  1. use width field if available
  2. use wpx pixel width if available
  3. use wch character count if available

Row Properties

The !rows array in each worksheet, if present, is a collection of RowInfo objects which have the following properties:

type RowInfo = {
  /* visibility */
  hidden?: boolean; // if true, the row is hidden

  /* row height is specified in one of the following ways: */
  hpx?:    number;  // height in screen pixels
  hpt?:    number;  // height in points

  level?:  number;  // 0-indexed outline / group level
};

Note: Excel UI displays the base outline level as 1 and the max level as 8. The level field stores the base outline as 0 and the max level as 7.

Implementation details (click to show)

Excel internally stores row heights in points. The default resolution is 72 DPI or 96 PPI, so the pixel and point size should agree. For different resolutions they may not agree, so the library separates the concepts.

Even though all of the information is made available, writers are expected to follow the priority order:

  1. use hpx pixel height if available
  2. use hpt point height if available

Number Formats

The cell.w formatted text for each cell is produced from cell.v and cell.z format. If the format is not specified, the Excel General format is used. The format can either be specified as a string or as an index into the format table. Parsers are expected to populate workbook.SSF with the number format table. Writers are expected to serialize the table.

Custom tools should ensure that the local table has each used format string somewhere in the table. Excel convention mandates that the custom formats start at index 164. The following example creates a custom format from scratch:

New worksheet with custom format (click to show)
var wb = {
  SheetNames: ["Sheet1"],
  Sheets: {
    Sheet1: {
      "!ref":"A1:C1",
      A1: { t:"n", v:10000 },                    // <-- General format
      B1: { t:"n", v:10000, z: "0%" },           // <-- Builtin format
      C1: { t:"n", v:10000, z: "\"T\"\ #0.00" }  // <-- Custom format
    }
  }
}

The rules are slightly different from how Excel displays custom number formats. In particular, literal characters must be wrapped in double quotes or preceded by a backslash. For more info, see the Excel documentation article Create or delete a custom number format or ECMA-376 18.8.31 (Number Formats)

Default Number Formats (click to show)

The default formats are listed in ECMA-376 18.8.30:

ID Format
0 General
1 0
2 0.00
3 #,##0
4 #,##0.00
9 0%
10 0.00%
11 0.00E+00
12 # ?/?
13 # ??/??
14 m/d/yy (see below)
15 d-mmm-yy
16 d-mmm
17 mmm-yy
18 h:mm AM/PM
19 h:mm:ss AM/PM
20 h:mm
21 h:mm:ss
22 m/d/yy h:mm
37 #,##0 ;(#,##0)
38 #,##0 ;[Red](#,##0)
39 #,##0.00;(#,##0.00)
40 #,##0.00;[Red](#,##0.00)
45 mm:ss
46 [h]:mm:ss
47 mmss.0
48 ##0.0E+0
49 @

Format 14 (m/d/yy) is localized by Excel: even though the file specifies that number format, it will be drawn differently based on system settings. It makes sense when the producer and consumer of files are in the same locale, but that is not always the case over the Internet. To get around this ambiguity, parse functions accept the dateNF option to override the interpretation of that specific format string.

Hyperlinks

Hyperlinks are stored in the l key of cell objects. The Target field of the hyperlink object is the target of the link, including the URI fragment. Tooltips are stored in the Tooltip field and are displayed when you move your mouse over the text.

For example, the following snippet creates a link from cell A3 to http://sheetjs.com with the tip "Find us @ SheetJS.com!":

ws['A3'].l = { Target:"http://sheetjs.com", Tooltip:"Find us @ SheetJS.com!" };

Note that Excel does not automatically style hyperlinks – they will generally be displayed as normal text.

Links where the target is a cell or range or defined name in the same workbook (“Internal Links”) are marked with a leading hash character:

ws['A2'].l = { Target:"#E2" }; /* link to cell E2 */

Cell Comments

Cell comments are objects stored in the c array of cell objects. The actual contents of the comment are split into blocks based on the comment author. The a field of each comment object is the author of the comment and the t field is the plain text representation.

For example, the following snippet appends a cell comment into cell A1:

if(!ws.A1.c) ws.A1.c = [];
ws.A1.c.push({a:"SheetJS", t:"I'm a little comment, short and stout!"});

Note: XLSB enforces a 54 character limit on the Author name. Names longer than 54 characters may cause issues with other formats.

To mark a comment as normally hidden, set the hidden property:

if(!ws.A1.c) ws.A1.c = [];
ws.A1.c.push({a:"SheetJS", t:"This comment is visible"});

if(!ws.A2.c) ws.A2.c = [];
ws.A2.c.hidden = true;
ws.A2.c.push({a:"SheetJS", t:"This comment will be hidden"});

Sheet Visibility

Excel enables hiding sheets in the lower tab bar. The sheet data is stored in the file but the UI does not readily make it available. Standard hidden sheets are revealed in the “Unhide” menu. Excel also has “very hidden” sheets which cannot be revealed in the menu. It is only accessible in the VB Editor!

The visibility setting is stored in the Hidden property of sheet props array.

More details (click to show)
Value Definition
0 Visible
1 Hidden
2 Very Hidden

With https://rawgit.com/SheetJS/test_files/master/sheet_visibility.xlsx:

> wb.Workbook.Sheets.map(function(x) { return [x.name, x.Hidden] })
[ [ 'Visible', 0 ], [ 'Hidden', 1 ], [ 'VeryHidden', 2 ] ]

Non-Excel formats do not support the Very Hidden state. The best way to test if a sheet is visible is to check if the Hidden property is logical truth:

> wb.Workbook.Sheets.map(function(x) { return [x.name, !x.Hidden] })
[ [ 'Visible', true ], [ 'Hidden', false ], [ 'VeryHidden', false ] ]

VBA and Macros

VBA Macros are stored in a special data blob that is exposed in the vbaraw property of the workbook object when the bookVBA option is true. They are supported in XLSM, XLSB, and BIFF8 XLS formats. The supported format writers automatically insert the data blobs if it is present in the workbook and associate with the worksheet names.

Custom Code Names (click to show)

The workbook code name is stored in wb.Workbook.WBProps.CodeName. By default, Excel will write ThisWorkbook or a translated phrase like DieseArbeitsmappe. Worksheet and Chartsheet code names are in the worksheet properties object at wb.Workbook.Sheets[i].CodeName. Macrosheets and Dialogsheets are ignored.

The readers and writers preserve the code names, but they have to be manually set when adding a VBA blob to a different workbook.

Macrosheets (click to show)

Older versions of Excel also supported a non-VBA “macrosheet” sheet type that stored automation commands. These are exposed in objects with the !type property set to "macro".

Detecting macros in workbooks (click to show)

The vbaraw field will only be set if macros are present, so testing is simple:

function wb_has_macro(wb/*:workbook*/)/*:boolean*/ {
	if(!!wb.vbaraw) return true;
	const sheets = wb.SheetNames.map((n) => wb.Sheets[n]);
	return sheets.some((ws) => !!ws && ws['!type']=='macro');
}

Parsing Options

The exported read and readFile functions accept an options argument:

Option Name Default Description
type Input data encoding (see Input Type below)
raw false If true, plain text parsing will not parse values **
codepage If specified, use code page when appropriate **
cellFormula true Save formulae to the .f field
cellHTML true Parse rich text and save HTML to the .h field
cellNF false Save number format string to the .z field
cellStyles false Save style/theme info to the .s field
cellText true Generated formatted text to the .w field
cellDates false Store dates as type d (default is n)
dateNF If specified, use the string for date code 14 **
sheetStubs false Create cell objects of type z for stub cells
sheetRows 0 If >0, read the first sheetRows rows **
bookDeps false If true, parse calculation chains
bookFiles false If true, add raw files to book object **
bookProps false If true, only parse enough to get book metadata **
bookSheets false If true, only parse enough to get the sheet names
bookVBA false If true, copy VBA blob to vbaraw field **
password “” If defined and file is encrypted, use password **
WTF false If true, throw errors on unexpected file features **
  • Even if cellNF is false, formatted text will be generated and saved to .w
  • In some cases, sheets may be parsed even if bookSheets is false.
  • Excel aggressively tries to interpret values from CSV and other plain text. This leads to surprising behavior! The raw option suppresses value parsing.
  • bookSheets and bookProps combine to give both sets of information
  • Deps will be an empty object if bookDeps is false
  • bookFiles behavior depends on file type:
    • keys array (paths in the ZIP) for ZIP-based formats
    • files hash (mapping paths to objects representing the files) for ZIP
    • cfb object for formats using CFB containers
  • sheetRows-1 rows will be generated when looking at the JSON object output (since the header row is counted as a row when parsing the data)
  • bookVBA merely exposes the raw VBA CFB object. It does not parse the data. XLSM and XLSB store the VBA CFB object in xl/vbaProject.bin. BIFF8 XLS mixes the VBA entries alongside the core Workbook entry, so the library generates a new XLSB-compatible blob from the XLS CFB container.
  • codepage is applied to BIFF2 - BIFF5 files without CodePage records and to CSV files without BOM in type:"binary". BIFF8 XLS always defaults to 1200.
  • Currently only XOR encryption is supported. Unsupported error will be thrown for files employing other encryption methods.
  • WTF is mainly for development. By default, the parser will suppress read errors on single worksheets, allowing you to read from the worksheets that do parse properly. Setting WTF:1 forces those errors to be thrown.

Input Type

Strings can be interpreted in multiple ways. The type parameter for read tells the library how to parse the data argument:

type expected input
"base64" string: Base64 encoding of the file
"binary" string: binary string (byte n is data.charCodeAt(n))
"string" string: JS string (characters interpreted as UTF8)
"buffer" nodejs Buffer
"array" array: array of 8-bit unsigned int (byte n is data[n])
"file" string: path of file that will be read (nodejs only)

Guessing File Type

Implementation Details (click to show)

Excel and other spreadsheet tools read the first few bytes and apply other heuristics to determine a file type. This enables file type punning: renaming files with the .xls extension will tell your computer to use Excel to open the file but Excel will know how to handle it. This library applies similar logic:

Byte 0 Raw File Type Spreadsheet Types
0xD0 CFB Container BIFF 5/8 or password-protected XLSX/XLSB or WQ3/QPW
0x09 BIFF Stream BIFF 2/3/4/5
0x3C XML/HTML SpreadsheetML / Flat ODS / UOS1 / HTML / plain text
0x50 ZIP Archive XLSB or XLSX/M or ODS or UOS2 or plain text
0x49 Plain Text SYLK or plain text
0x54 Plain Text DIF or plain text
0xEF UTF8 Encoded SpreadsheetML / Flat ODS / UOS1 / HTML / plain text
0xFF UTF16 Encoded SpreadsheetML / Flat ODS / UOS1 / HTML / plain text
0x00 Record Stream Lotus WK* or Quattro Pro or plain text
0x7B Plain text RTF or plain text
0x0A
Ready for the next level?
Join Devstore's founding team to build the world's largest open-source knowledgebase, work with the hottest technologies, and be part of something great

Popularity

Weekly Downloads
348.4K
Stars
16.9K

Maintenance

Development

Last ver 2 months ago
Created 6 years ago
Last commit 3 months ago
6 days between commits

Technology

Node version: 12.7.0
8580.2K unpacked

Legal and Compliance

Apache License 2.0
OSI Approved
0 vulnerabilities

Contributors

91 contributors
SheetJS
Maintainer, 287 commits, 37 merges
Works at SheetJS
kinwah
12 commits
Ryan Cavanaugh
12 commits
Works at Microsoft
Wolfgang Faust
10 commits, 1 PRs
Niggler
6 merges
Hugues Malphettes
5 commits, 2 PRs
Works at Sutoiku

Tags

excel
xls
xlsx
xlsb
xlsm
ods
csv
dbf
dif
sylk
office
spreadsheet
© 2019 Devstore, Inc.
Devstore helps developers find and use open-source packages, so they can focus on building amazing things